

HONORS

offered by

Department of Information Technology

R-19 HONORS offered by IT Dept

SNo.	Course Name	L-T-P	CR	Prerequisites	Offered to	
		РО	OL-1			
1	Practical Cryptography in Python	3-1-0	4	Python	IT	
2	Practical Machine Learning with Python	3-1-0	4	Python	IT	
3	Parallel Programming	3-1-0	4	Data structures Programming	IT	
4	Enterprise Architecture Foundations	3-1-0	4	Software Engineering	IT	
		PO	OL-2			
1	Computer Forensics and Cyber Crime	3-1-0	4	Security	IT	
2	Business Intelligence	3-1-0	4	Data Science	IT	
3	Distributed and Cloud Computing: From Parallel Processing to IoT	3-1-0	4	Parallel Programming	IT	
4	Software Design	3-1-0	4	Software Engineering	IT	
		PO	OL-3			
1	Cyber Laws and Ethics	3-1-0	4	Cyber Crime	IT	
2	Reinforcement Learning	3-1-0	4	Machine Learning	IT	
3	Cloud Networking	3-1-0	4	Cloud Computing Networks	IT	
4	Software Quality Analysis	3-1-0	4	Scripting Languages	IT	
		PO	OL-4			
1	Blockchain Fundamentals	3-1-0	4	Security	IT	
2	Computer Vision	3-1-0	4	Graphics Programming	IT	
3	Cloud Security and Privacy	3-1-0	4	Cloud Computing Security	IT	
4	Agile Software Development	3-1-0	4	Software Engineering	IT	

B.Tech – IT (Honors)

<u>Streams</u>

1.	Security & Forensics
2.	Data Engineering
3.	Distributed and Cloud
	Computing
4.	Software Engineering

PRACTICAL CRYPTOGRAPHY USING PYTHON

Course Code – Category:

L T P E O 3 1 0 0 0

Prerequisites: Python programming

Course Objective:

The course is intended to develop a greater intuition for the proper use of cryptography and the basics of writing cryptographic algorithms in Python, demystifies cryptographic internals, and demonstrates common ways cryptography is used incorrectly.

Course Outcomes:

After completion of this course, the students will be able to:

- **CO-1**. Provide security of the data over the network.
- CO-2. Implement various networking protocols.
- **CO-3**. Protect any network from the threats in the world.

CO-4. Do research in the emerging areas of cryptography and network security

	Mapping of Course Outcomes with FOS and FSOS													
COs/POs- PSOs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P010	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	1	1	1	1	1	1		1	2	2
CO2	1	2	2	1		1	1	1	1			1	3	2
CO3	1	3	1	1	1			1	1	1		1	3	2
CO4	1	1	1	1	1	1	1	1	1	1		1	3	2

Mapping of Course Outcomes with POs and PSOs

UNIT-I:

Cryptography: More Than Secrecy

Setting Up Your Python Environment, Caesar's Shifty Cipher, A Gentle Introduction to Cryptography, Uses of Cryptography, What Could Go Wrong?, YANAC: You Are Not A Cryptographer, "Jump Off This Cliff"—The Internet.

Hashing

Hash Liberally with hashlib, Making a Hash of Education, Digestible Hash, Pass Hashword, Hash Passwords, Cracking Weak Passwords.

Learning Outcomes: At the end of this unit, the students will be able to

- Understand where cryptography is used, why, and how it gets misused
- Know what secure hashing is used for and its basic properties

UNIT-II:

12 Periods

12 Periods

Symmetric Encryption: Two Sides, One Key –Let's Scramble!, What Is Encryption, Really?, AES: A Symmetric Block Cipher, ECB Is Not for Me, Wanted: Spontaneous Independence, Key and IV Management, Exploiting Malleability, Weak Keys, Bad Management, finalize().

CREDITS 4

Sessional Marks: 40 End Exam Marks: 60 End Exam: 3 Hours Learning Outcomes: At the end of this unit, the students will be able to

• Get up to speed on algorithms and modes for block ciphers such as AES, and see how bad configurations break

UNIT-III:

12 Periods

Asymmetric Encryption: Public/Private Keys - A Tale of Two Keys, Getting Keyed Up, RSA Done Wrong: Part One, Stuffing the Outbox, What Makes Asymmetric Encryption Different?, Pass the Padding, The Proof Is in the Padding, Exploiting RSA Encryption with PKCS #1 v1.5 Padding, Additional Notes About RSA,

Learning Outcomes: At the end of this unit, the students will be able to

• Discover how RSA encryption can be broken if insecure padding is used

UNIT-IV:

12 Periods

Message Integrity, Signatures, and Certificates- An Overly Simplistic Message Authentication Code (MAC), MAC, HMAC, and CBC-MAC, Digital Signatures: Authentication and Integrity, Certificates: Proving Ownership of Public Keys, Certificates and Trust, Revocation and Private Key Protection, Replay Attacks, ummarize-Then-MAC **Learning Outcomes:** At the end of this unit, the students will be able to

• Use message integrity and/or digital signatures to protect messages

UNIT-V:

12 Periods

Combining Asymmetric and Symmetric Algorithms– Exchange AES Keys with RSA, Asymmetric and Symmetric: Like Chocolate and Peanut Butter, Measuring RSA's Relative Performance, Diffie-Hellman and Key Agreement, Diffie-Hellman and Forward Secrecy, Challenge-Response Protocols,

More Symmetric Crypto: Authenticated Encryption and Kerberos-AES-GCM, AES-GCM Details and Nuances, An Introduction to Kerberos

Learning Outcomes: At the end of this unit, the students will be able to

• Utilize modern symmetric ciphers such as AES-GCM and CHACHA

Text Book:s

1. Practical Cryptography in Python, Learning Correct Cryptography by Example -Authors Seth James Nielson, Christopher K. Monson

Reference Books:

1. Practical Cryptography for Developers, Svetlin Nakov, https://cryptobook.nakov.com/ (This book is freely available.)

PRACTICAL MACHINE LEARNING WITH PYTHON

Course Code – Category:

L T P E O

3 1 0 0 0

Sessional Marks: 40 End Exam Marks: 60 End Exam: 3 Hours

CREDITS 4

Prerequisite(s):

- Python programming knowledge
- Basic knowledge of mathematics and statistics

Course Objectives

- Learn the purpose of Machine Learning and where it applies in the real world
- Explore several algorithms and see how they help us perform several machine learning tasks.

Course Outcomes

On completing this course student will be able to

CO-1: Illustrate basics of machine learning using Python

CO-2: Describe supervised and unsupervised algorithms and their practical uses

CO-3: Use a suitable programming language to work with data and apply machine learning tools to it.

CO-4: Design simple algorithms, code them with python and test with benchmark datasets.

			1										1	
	PO1	PO	PSO	PSO										
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1							1	1		2	2	2
CO2	3		1	2	2	2			1	1		2	2	2
CO3	2	2	2	2	3	2	1	1	3	3	2	3	3	2
CO 4	2	2	3	3	3	2	2	1	3	3	2	3	3	2

UNIT-I: Machine Learning Basics

10 Periods

Introduction, Why Machine Learning, , Need for Machine Learning, Understanding Machine Learning, Types of Machine Learning, Main Challenges in Machine Learning, Real world applications of Machine Learning

Learning outcomes: At the end of the unit, the student will be able to

- Learn why we need machine learning and its fundamentals
- How best we can leverage Machine Learning to get the maximum from your data

R-19 HONORS offered by IT Dept

UNIT-II: Python Machine Learning Ecosystem

Introduction, Strengths, Installing Jupyter notebook, numpy, pandas, Scikit- Learn, Essential Libraries and Tools, Loading sample dataset, loading a CSV File, Loading an Excel File, First Application: Classifying iris species, training and Testing Data, Build the model (knn), making predictions, evaluating model, Pre-processing and Feature Extraction

Learning outcomes: At the end of the unit, the student will be able to

- Learn why python is apt language for Machine Learning
- Use python libraries to solve machine learning problems

UNIT-III: Data Wrangling

DataCollection, Data Description, Understanding Data, Get Data, Imputing Missing Values, Handling Duplicates, Handling Categorical Data, Normalizing Values, Prepare Data for Machine Learning Algorithms, Data Visualization,.

Learning outcomes: At the end of the unit, the student will be able to

- Learn how raw data is converted to a form where it can be used in machine learning algorithms
- Implement Data wrangling techniques to get the data into a form where it can be utilized in Machine Learning Algorithms for analysis

UNIT-IV: Supervised Learning

Introduction, Logistic Regression, K nearest Neighbours, Naive Bayes Classifier, Support Vector Machines, Random Forest

Learning outcomes: At the end of the unit, the student will be able to

- Identify the characteristics of data and implement techniques to solve problem
- Analyze the data and predict decisions using Supervised Learning algorithms

UNIT-V: Unsupervised Learning

Introduction, Supervised VS unsupervised, Types of unsupervised Learning, Challenges in Unsupervised Learning K Means Clustering, DBSCAN, Principal Component Analysis Learning outcomes: At the end the unit, student will be able to

Learning outcomes: At the end the unit, student will be able

- Distinguish supervised and unsupervised learning
- Analyze the data and predict decisions using Unsupervised Learning algorithms

Textbooks:

- Practical Machine Learning with Python by Dipanjan Sarkar Raghav Bali Tushar Sharma
- Introduction to Machine Learning with Python by Andreas C. Müller, Sarah Guido

Reference Books:

- 1. Machine Learning with Python Cookbook by Chris Albon
- 2. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron

11 Periods

(12 Periods)

(12 periods)

10 Periods

PARALLEL PROGRAMMING

Course Code – Category:

CREDITS 4

Sessional Marks: 40 End Exam Marks: 60 End Exam: 3 Hours

L T P E O 3 1 0 0 0

Prerequisite(s): Data Structures Programming

Course Objectives

- 1. To familiarize the issues in parallel computing.
- 2. To describe distributed memory programming using MPI.
- 3. To understand shared memory paradigm with Pthreads and with OpenMP.
- 4. To learn the GPU based parallel programming using OpenCL.

Course Outcomes

After completion of this course, the students will be able to:

- **CO-1:** Identify issues in parallel programming.
- CO-2: Develop distributed memory programs using MPI framework.
- **CO-3:** Design and develop shared memory parallel programs using Pthreads and using OpenMP.
- **CO-4:** Implement Graphical Processing OpenCL programs.

COs/POs- PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1		2				2		3	2	2	2
CO2	2		3	2	2				2	1		2	3	2
CO3	3	2	3	2	2				2	2	3	2	3	2
CO4	3	2	2	2	2				2	1	3	2	3	2

UNIT-I: FUNDAMENTALS OF PARALLEL COMPUTING

10 Periods

Need for Parallel Computing – Parallel Computer Models – ILP, TLP and Data Parallelism – Parallel Programming Overview – Processes, Tasks and Threads – Parallel Programming Models – Shared Memory Programming – Message Passing Paradigm – Interaction and Communication – Interconnection Networks

Learning outcomes: At the end of this unit, the students will be able to

- Explain the different parallel computer models
- Illustrate parallel programming models.
- Describe the interaction and communication inter connection networks

UNIT-II: CHALLENGES OF PARALLEL PROGRAMMING 8 Periods

Identifying Potential Parallelism – Techniques for Parallelizing Programs – Issues – Cache Coherence issues – Memory Consistency Models – Maintaining Memory Consistency – Synchronization Issues – Performance Considerations.

Learning outcomes: At the end of this unit, the students will be able to

- Classify the techniques for parallelizing programs
- Identify the cache, coherence, and synchronization issues.
- Describe Memory consistency Models
- Identify the performance considerations

UNIT-III:

8 Periods

OpenMP Execution Model – Memory Model and Consistency – OpenMP Directives – Run Time Library Routines – Handling Data and Functional Parallelism – Performance Considerations.

Learning outcomes: At the end of this unit, the students will be able to

- Explain OpenMP Execution Model Memory Model and Consistency
- Describe how to handle data functional Parallelism.
- Identify Run Time Library Routines.

UNIT-IV:

9 Periods

The MPI Programming Model – MPI Basics – Circuit Satisfiability – Global Operations – Asynchronous Communication – Collective Communication – Other MPI Features – Performance Issues – Combining OpenMP and MPI.

Learning outcomes: At the end of this unit, the students will be able to

- Understand the MPI Programming Model.
- Explain Performance issues with MPI programming.

UNIT-V: PROGRAMMING HETEROGENEOUS PROCESSORS 10 Periods

GPU Architecture – Basics of CUDA – CUDA Threads – CUDA Memories – Synchronization Handling – Performance Issues – Application Development. Introduction to OpenCL.

Learning outcomes: At the end of this unit, the students will be able to

- Explain GPU architecture.
- Describe the CUDA threads and CUDA memories
- Develop the application using OpenCL framework

TEXT BOOKS

- 1. Peter S. Pacheco, "An Introduction to Parallel Programming", Morgan Kaufmann, 2011.
- 2. Michael J Quinn, "Parallel programming in C with MPI and OpenMP", Tata McGraw Hill, 2003.

REFERENCES

- 1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, "Introduction to Parallel Computing", Second Edition, Pearson Education Limited, 2003.
- 2. Shameem Akhter and Jason Roberts, "Multi-core Programming", Intel Press, 2006.
- 3. Ian Foster, "Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering", Addison Wesley Longman Publishing Co., USA, 1995.
- 4. David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture: A hardware/ Software approach", Morgan Kaufmann / Elsevier Publishers, 1999.
- 5. OpenMP Programmer's Manual. 6. MPI Programmer's Manual

Enterprise Architecture Foundation

 Course Code – Category:

 L
 T
 P
 E
 O

 3
 1
 0
 0
 0

CREDITS 4 Sessional Marks: 40 End Exam Marks: 60 End Exam: 3 Hours

Prerequisite(s): None

Course Objectives

This course covers foundational aspects of both enterprise and architectural thinking, including the software to technology to solution architecture continuum, role of EA in business and IT alignment, architectural styles and techniques for capturing and documenting architectures. Techniques for analyzing and reasoning about architectures are practiced in assignments in class.

Course Outcomes

After completion of this course, the students will be able to:

CO-1: Know theoretical foundations of modern overview, tools and uses of enterprise architecture

CO-2: Know main theoretical prerequisites of managing, deploying enterprise architecture

CO-3: Formulate documenting enterprise architecture.

CO-4: Use methods of interactive modelling of additional enterprise architecture tools.

COs/P Os- PSOs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P01 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	3	1	1	1	2	1	1	1	1		2	3	2
CO2	3	3	1	1	2	2	1	1	1	1		2	3	2
CO3	3	3	1	1	2	2	1	1	1	1		2	3	2
CO4	3	3	2	1	2	2	1	1	1	1		2	3	2

Mapping of Course Outcomes with POs and PSOs

UNIT-I:

10 Periods

Introduction to EA: What is Enterprise Architecture, Context for Enterprise Architecture, Levels of Architecture, Types of Architecture, Scope of Architecture, Characteristics of Good Architecture, Lists Diagrams and Matrices.

Meet the Enterprise Architecture Tools: Activity Diagram, Auditing, Balanced Scorecard, Business Process Diagram, Calendar, Class Diagram, Component Diagram, Dashboard Diagram, Decision Tree Diagram, Deployment Diagram,Gap Analysis Matrix, Heat Map, **Learning outcomes**: At the end of this unit, the students will be able to

• Understand the architecture continuum and the relation between software, applications, technology and solution architectures

UNIT-II:

10 Periods

Meet the Enterprise Architecture Tools: Import and Export Spreadsheets, Organizational Chart Diagram, Patterns, Relationship Matrix, Requirement Diagram, Roadmap Diagram, Specification Manager, Strategy Map, Team Reviews, Team Reviews, Traceability Window, Value Chain.

Uses of Enterprise Architecture: Mergers and Acquisitions, Corporate Divestiture, Architecture Oversight, Business and Systems Improvement, Communication, Enterprise Transitions, Implementation Guide, Portfolio Management.

Learning outcomes: At the end of this unit, the students will be able to

- Understand architectural styles and patterns used in solution development and use these in projects
- Understand the concepts and components of business architecture.

UNIT-III:

10 Periods

Architecture Program Setup: Management Structure, Architecture Process, Architecture Repository, Tool Setup, Architecture Principles.

Managing an Enterprise Architecture: Governance Process, Architecture Steering Committee, Architecture Review Board, Governance Register, Architectures: Strategic Plans, Mission and Vision, Drivers, Goals and Objectives, Capabilities, Business Processes, Conceptual Information Model, Logical Data Model, Schemas and Messages, Physical Data Model, Application Lists Diagrams and Matrices, Application Communication, Interface Lists, Capabilities and Applications, Business Processes and Applications, Application Platform Services, Infrastructure Facilities, Stakeholder Modeling, Requirements Modeling.

Learning outcomes: At the end of this unit, the students will be able to

- Use a diagramming tool to develop architectural viewpoints
- Understand and use quality attributes for analyzing and reasoning about architectures

UNIT-IV:

Document and Enterprise Architecture Techniques: Architecture Description, Requirement Specification, Vision, Plan, Assessment, Architecture Governance, Requirements Management, Partitioning, Portfolio Management, Balanced Scorecard, Baselines and Versioning, Business Goals and Objectives Modeling, Capability Modeling, Data Modeling, Principles Management, Risk Analysis and Management, Technical Reference Model, Use Cases and Scenarios.

Learning outcomes: At the end of this unit, the students will be able to

• Understand the role of enterprise architecture and the path to building enterprise level architecture models.

UNIT-V:

Additional Enterprise Architecture Tools: Auto Names and Counters, Baseline Tool, Boundary, Document Artifact, Element Discussions, Glossary, Image Manager, List View, Mind Mapping Diagram, Model Views, Package Browser, Project Browser, Requirements Checklist, Requirement Properties, Risk Taxonomy, Security, Stereotyping, Tagged Values, Visual Filters, Working Sets

Learning outcomes: At the end of this unit, the students will be able to

10 Periods

10 Periods

• Effectively participate in a team effort to build architecture for software intensive systems

TEXT BOOKS

- Enterprise Architect User Guide SeriesEnterprise Architecture Author: Sparx Systems & Stephen Maguire Date: 30/06/2017 Version: 1.0
- 2. An Introduction to Holistic Enterprise Architecture: Fourth Edition 4th Edition, Kindle Edition

REFERENCES

- Designing Enterprise Architecture Frameworks: Integrating Business Processes with IT Infrastructure by N Zarvić, R Wieringa. Apple Academic Press (19 April 2016), 360 p. URL: <u>https://doi.org/10.1201/b16417</u>
- 2. Neubauer M., Stary CH., S-BPM in the Production Industry. Stakeholder approach, Springer Open, 2017. URL: https://www.springer.com/gp/book/9783319484655

Note: This course is related to Employability/Skill development.